Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339161

RESUMO

Physical exercise (EX) is well established for its positive impact on brain health. However, conventional EX may not be feasible for certain individuals. In this regard, this study explores electromyostimulation (EMS) as a potential alternative for enhancing cognitive function. Conducted on both human participants and rats, the study involved two sessions of EMS applied to the quadriceps with a duration of 30 min at one-week intervals. The human subjects experienced assessments of cognition and mood, while the rats underwent histological and biochemical analyses on the prefrontal cortex, hippocampus, and quadriceps. Our findings indicated that EMS enhanced executive functions and reduced anxiety in humans. In parallel, our results from the animal studies revealed an elevation in brain-derived neurotrophic factor (BDNF), specifically in the hippocampus. Intriguingly, this increase was not associated with heightened neuronal activity or cerebral hemodynamics; instead, our data point towards a humoral interaction from muscle to brain. While no evidence of increased muscle and circulating BDNF or FNDC5/irisin pathways could be found, our data highlight lactate as a bridging signaling molecule of the muscle-brain crosstalk following EMS. In conclusion, our results suggest that EMS could be an effective alternative to conventional EX for enhancing both brain health and cognitive function.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Condicionamento Físico Animal , Humanos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais/fisiologia , Músculos/metabolismo , Condicionamento Físico Animal/fisiologia , Encéfalo/metabolismo , Fibronectinas/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279218

RESUMO

The positive effects of physical exercise (EX) are well known to be mediated by cerebral BDNF (brain-derived neurotrophic factor), a neurotrophin involved in learning and memory, the expression of which could be induced by circulating irisin, a peptide derived from Fibronectin type III domain-containing protein 5 (FNDC5) produced by skeletal muscle contraction. While the influence of EX modalities on cerebral BDNF expression was characterized, their effect on muscle FNDC5/Irisin expression and circulating irisin levels remains to be explored. The present study involved Wistar rats divided into four experimental groups: sedentary (SED), low- (40% of maximal aerobic speed, MAS), intermediate- (50% of MAS) and high- (70% of MAS) intensities of treadmill EX (30 min/day, 7 days). Soleus (SOL) versus gastrocnemius (GAS) FNDC5 and hippocampal BDNF expressions were evaluated by Western blotting. Additionally, muscular FNDC5/Irisin localization and serum/hippocampal irisin levels were studied by immunofluorescence and ELISA, respectively. Our findings revealed that (1) serum irisin and hippocampal BDNF levels vary with EX intensity, showing a threshold intensity at 50% of MAS; (2) hippocampal BDNF levels positively correlate with serum irisin but not with hippocampal FNDC5/Irisin; and (3) GAS, in response to EX intensity, overexpresses FNDC5/Irisin in type II muscle fibers. Altogether, peripheral FNDC5/Irisin levels likely explain EX-dependent hippocampal BDNF expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fibronectinas , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fibronectinas/metabolismo , Ratos Wistar , Fatores de Transcrição/metabolismo , Músculo Esquelético/metabolismo
3.
Front Mol Neurosci ; 16: 1275924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868812

RESUMO

Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA